世间万物的复杂性很多就是从一些简单的规则开始通过系统自发的相互作用产生这就是神奇的自组织自组织现在被发现出现在自然科学乃至社会科学的诸多领域本文主要介绍数学上最早的概念模型阿贝尔沙堆模型
撰文JordanEllenberg威斯康星大学麦迪逊分校数学教授编译许钊箐你听说过多米诺骨牌理论Dominotheory吗这是冷战时期美国为遏制共产主义提出的地缘政治理论指社会主义国家会辐射影响周边国家进行社会主义变革此理论极大地影响了美国二十世纪中期的外交政策被用来为其霸权主义行为正名但抛开政治理论在自然界确实也有类似的多米诺骨牌行为从物理学的角度上讲它应该被称为沙堆理论sandpiletheory
现实世界的政权转变往往不是有条不紊的发生而是在突然间的协调配合下发生的比如阿拉伯之春以及东欧剧变最终苏联解体这些历史事件中平静的时期里暗藏危机然后在某一刻陡然倒塌就像沙堆一样假如你在一个沙堆上顶部再放一些沙砾沙堆可能在短时间内没有明显变化但是顷刻间类似于一场雪崩顶部的沙砾会以不规则的方式突然冲下并且在过程中很可能引发小的次级流沙
这个比喻不一定会给我们带来什么毕竟真实的沙子很难去分析就像现实世界的政治一样但奇迹也在这里物理学家巴克PerBak汤超ChaoTang和维森菲尔德KurtWiesenfeld在1987年提出了一种由沙堆的抽象而来的阿贝尔沙堆模型Abeliansandpilemodel这种模型在保持足够简单以便于应用数学来研究的同时似乎又可以刻画真实沙堆的一些有趣但无序的特点并且适用于其他一些源自生物学物理学以及社会科学的复杂系统⊥87⊥
阿贝尓沙堆模型它的过程是这样的我们可以想象一个无穷网格在每一个网格上都有一小堆沙子并在每一个格子内用数字表示沙砾的数目
但在垂直方向沙堆的高度是有一定限制的所以这里假设每当网格中沙砾数目到达四则四粒沙砾会向周边四个格子流散所以如果初始是两个网格中有四粒沙砾则沙堆流散之后左侧的网格变成了此时右侧网格已经超过四粒的沙堆那么它会继续朝周边的四个网格各流散一粒沙砾现在因为所有位置的沙砾数目都不超过四每个网格点都处在稳定的状态所以沙堆流散的过程就停止了
以上的分析过程中我们先进行的是原本两个网格中左侧的流散其次是右侧的我们如何知道哪个网格应该先向四周流散呢好消息是选择的顺序并不重要因为我们可以由稳定状态网格的对称性得出这种阿贝尔沙堆的最终状态并不取决于我们选择模拟流沙网格的顺序这也是其取名为阿贝尔的原因意味着我们选择的先后顺序不影响最后的结果
译者注数学命名中的阿贝尔通常是为了纪念挪威数学家尼尔斯阿贝尔NielsHenrikAbel18021829他开启了许多领域的研究并以证明五次方程的根式通解不存在以及椭圆函数的研究闻名尽管他数学成就极高但其生活遇到了很多困难最后因肺结核不满27岁逝世比如说加法这种运算是阿贝尔的我们指加法中元素是可以交换的先加2再加3等价于先加3再加2但是大多数的运算或操作都不是阿贝尔的比如说先解锁汽车再拉开车门那么车门就打开了但是先拉车门再解锁汽车得到结果完全不同车门还是关闭的所以沙堆的阿贝尔性质可以算是一个惊喜
那么你可能会问如果我们在一个网格上放很多很多沙砾比如说一百万粒会发生什么当沙砾向四周不断流散最后稳定下来时会是什么样子你可能会想象最后会是一个巨大平整的沙堆其中接近中心的一个很大的区域会有很多包含三个沙砾的网格
但并不是这样下面这幅图展现了最终稳定后的网格情况百万沙粒中心点上堆积大约大量的沙砾准确地说是2的20次方来模拟一个阿贝尔沙堆颜色表示堆高蓝色表示没有沙子紫色表示一粒黄色表示两粒褐红色表示三粒丨图片来源WesPegden好吧会不会是一百万不足以使得沙堆数量是光滑变化的如果我们用十亿粒沙砾呢会得到一个平坦的大的沙堆吗最终的图像是这样的十亿粒沙砾模拟图丨图片来源WesPegden我们期待的平坦情况没有出现相反那些奇异的分形图样持续存在在接近中心的地方复杂的图案就像是一个圆顶其内部还镶嵌着很多格子看起来是某种几何图案但又像是随机的在沙堆的边界则是众多一致的三角形以规则的模式紧密连接
这些图片是由卡内基梅隆大学的数学教授WesPegden及合作者康奈尔大学的LionelLevine和CharlieSmart在沙堆的前沿研究中绘制的⊥8
有答案事实上一些实验表明我们可能有更强的结论空的网格不仅不会相邻它们甚至倾向于不接近彼此就像带相同电荷的粒子它们会相互排斥
复杂中所蕴含的简单规律在你真的去拿显微镜观察沙堆之前我不得不提醒你真正的沙堆是不会产生这种自发性的结构的⊥8